

RELAZIONE ILLUSTRATIVA MATERIALI

QUALITÀ E DOSATURA

Elab.05

Per

RISTRUTTURAZIONE DI STRADE NEL CONCENTRICO E NELLE FRAZIONI – INTERVENTO 2020 MESSA IN SICUREZZA DI STRADE PONTI E VIADOTTI Codice CUP J37H18002170004 MURO PARCHEGGIO Piazza ANTICO LAVELLO

PROGETTO ESECUTIVO

CITTÀ DI TORTONA

PROVINCIA DI ALESSANDRIA

Committente:

Città di Tortona

Settore Lavori Pubblici e CUC

RELAZIONE ILLUSTRATIVA DEI MATERIALI

(D.M. 17 gennaio 2018 - 10.1)

Di proprietà: Città di Tortona

Siti nel Comune di Tortona (AL), Piazza Antico Lavello

Si relaziona quanto segue:

Geometria

Il manufatto oggetto del progetto consiste in un muro di sostegno in Calcestruzzo di tipologia "a

gravità" atto a formare nell' abito di un pendio collinare piuttosto accentuato, posto a ridosso

dell'area boscata del Castello ed il sottostante tessuto urbano edificato. Il nuovo progetto prevede un

contromuro in C.A., poggiante su fondazione su pali trivellati e stabilizzato con tiranti geotecnici.

Coordinate

(latitudine: 44.896642 longitudine: 8.868514)

Normativa

D.M. 17 gennaio 2018 - Norme tecniche per le costruzioni

Intervento consolidamento muro di sostegno in C.A.

Tipo di costruzione

Tipologia strutturale: IN C.A.

Vita nominale: >= 50 anni

Classe: II

Edificio in zona sismica 3

Descrizione delle strutture portanti edificio a progetto

La tipologia strutturale a progetto consiste in un muro di sostegno in c.a. con realizzazione di pali di

fondazione e tiranti per contrastare la spinta del terreno.

L'intervento prevede la realizzazione di un nuovo muro di sostegno in cemento armato di altezza

pari a 4.5m, lunghezza 88m e spessore 35cm. di placcaggio al muro esistente connesso ad esso con

2

spinottature, La parete verticale risulta incastrata alla base su una fondazione consolidata con pali di medio diametro (D300).

Per soddisfare le sollecitazioni dovute alle spinte orizzontali dovute al terreno e al pendio, sono previsti una fila di tiranti a 1.5m di altezza con interasse 3m, e una fila di tiranti a 2.5m con interasse 3m.

L'armatura del tirante è composta da una barra di acciaio tipo Dywidag di qualità Y1050H, con tensione di snervamento caratteristico pari a 760 KN.

Metodo di calcolo usato e vincoli della struttura

Verifiche con metodo agli stati limite ultimi – analisi dinamico-modale con azione sismica

MATERIALI PREVISTI

• Strutture di fondazione e muri

Calcestruzzo di cemento tipo 325 con resistenza caratteristica: R_{ck} > 37 N/mm²

- classe di resistenza: C 30/37
- \mathbf{R}_{ck} : valore caratteristico di resistenza a compressione = 37 N/mm^2
- **fck**: valore di resistenza cilindrica a compressione = 0.83 Rck = 30.71 N/mm²
- $\mathbf{f_{ctm}}$: valore medio della resistenza a trazione = 0,3 fck $^{2/3}$ = 2,942 N/ mm²
- \mathbf{f}_{cfm} : resistenza media a trazione per flessione = 1,2 f_{ctm} = 3,53 N/mm²
- \mathbf{E}_{c} : modulo di resistenza elastica = = 22000 x(fcm/10)^{0.3} = 33019.435 N/mm²
- v: coefficiente di Poisson = 0.2
- α : coefficiente di dilatazione termica = 1 x 10⁻⁶
- \mathbf{f}_{cd} : valore di calcolo della resistenza a compressione =

$$0.85 f_{ck}/\gamma_c = 17.402 \text{ N/mm}^2$$
 con $\gamma_c = 1.5$

- Massa volumica: 25 KN/m³
- Consistenza: Slump S4
- Classe di esposizione: XC4

• Calcestruzzo pali

Calcestruzzo di cemento tipo 325 con resistenza caratteristica : $R_{ck} > 30 \text{ N/mm}^2$

- classe di resistenza: C 30/37

- \mathbf{R}_{ck} : valore caratteristico di resistenza a compressione = 30 N/mm^2
- **fck**: valore di resistenza cilindrica a compressione = 0.83 Rck = 24.9 N/mm²
- \mathbf{f}_{ctm} : valore medio della resistenza a trazione = 0,3 fck $^{2/3}$ = 2,558 N/ mm²
- $\mathbf{f_{cfm}}$: resistenza media a trazione per flessione = 1,2 $\mathbf{f_{ctm}} = 3,07 \text{ N/mm}^2$
- \mathbf{E}_{c} : modulo di resistenza elastica = = 22000 x(fcm/10)^{0.3} = 31447.161 N/mm²
- \mathbf{v} : coefficiente di Poisson = 0,2
- α : coefficiente di dilatazione termica = 1 x 10⁻⁶
- \mathbf{f}_{cd} : valore di calcolo della resistenza a compressione =

$$0.85 \text{ f}_{ck}/\gamma_c = 14.11 \text{ N/mm}^2 \quad \text{con} \quad \gamma_c = 1.5$$

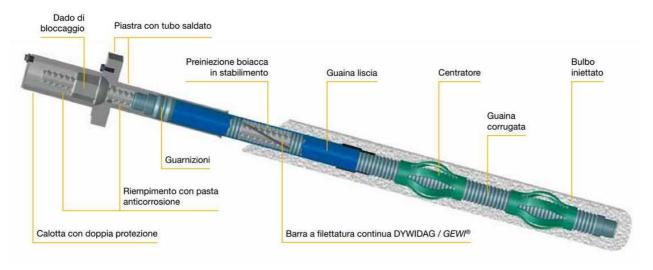
- Massa volumica: 25 KN/m³
- Consistenza: Slump S4
- Classe di esposizione: XC4

Barre di armatura opere in c.a. e pali di fondazione:

Acciaio tipo B450C con resistenza caratteristica a snervamento : $f_{yk} > 450 \text{ N/mm}^2$

- $\mathbf{f_{vk}}$: tensione caratteristica di snervamento = 450 N/mm^2
- $\mathbf{E_s}$: modulo di elasticità = 200 KN/mm²
- α : coefficiente di dilatazione termica = $10 * 10^{-6} / C^{\circ}$
- $\mathbf{f_{yd}}$: valore di calcolo della resistenza = f_{yk} / γ_s = 390 N/mm² con γ_c = 1,15
- **Massa volumica**: 7850 Kg/m³ media

Tiranti a barre DYWIDAG a filettatura continua:


- Malta e/o boiacca di cemento Resistenza Comp. a 28gg > 40 N/mm²
- Armatura barre Dywidag tipologia Y1050H

DYWIDAG Y1050H acciaio da precompressione

Diametro nominale Ø	Tensione snerv. / rottura f _{0,1k} /f _{pk}	Sezione trasversale A	Carico snervamento F _{p0,1k}	Carico ultimo F _{pk}	Peso	Peso DCP	Omolog.
[mm]	[N/mm ²]	[mm ²]	[kN]	[kN]	[kg/m]	[kg/m]	
26.5	950/1.050	552	525	580	4.48	7.4	
32	950/1,050	804	760	845	6.53	9.8	
36	950/1,050	1,018	960	1,070	8.27	12.3	
40	950/1,050	1,257	1,190	1,320	10.21	14.0	
47	950/1,050	1,735	1,650	1,820	14.10	20.0	\Diamond

Assemblaggio tiranti con Barre Pre-Iniettate, protezione per tipo PERMANENTE (vedi tavole grafiche per lunghezze guaine Corrugate / Lisce)

(prestare attenzione alle giunzioni e alla loro PROTEZIONE)

Strutture in acciaio (UNI1090):

Carpenterie metalliche: Piastre ripartizione Testa Tirante

- * Acciaio tipo S275 JR con resistenza caratteristica a snervamento : $f_{yk} > 275 \text{ N/mm}^2$
 - \mathbf{f}_{yk} : tensione caratteristica di snervamento = 275 N/mm²
 - $\mathbf{E_s}$: modulo di elasticità = 210 KN/mm²
 - α : coefficiente di dilatazione termica = $10 * 10^{-6} / C^{\circ}$
 - \mathbf{f}_{yd} : valore di calcolo della resistenza = $f_{yk} / \gamma_{M0} = 261 \text{ N/mm}^2 \text{ con } \gamma_c = 1,05$
 - **Massa volumica**: 7850 Kg/m³ media